
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

IS JAVA A “BALL AND CHAIN”? PAGE 3

PLUS...
The Benefits of Virtualized
WebLogic Clustering

Code Development in
Distributed Environments

RETAILERS PLEASE DISPLAY
UNTIL APRIL 30, 2007

 JDJ.SYS-CON.COM VOL.12 ISSUE:2

No. 1 i-Technology Magazine in the World

JDJ.SYS-CON.COM VOL.12 ISSUE:2

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM

SEE PAGES
 19 and 23

Altova® Missionkit™ 2007 – Intelligent tools for XML developers and software architects.

Gear up for
 development excellence

Take off with the Altova MissionKit, and discover
the secret to savings on top software tools.

Spied in the Altova MissionKit 2007:
l The world’s leading XML development tools

l Plus application design, data management, and modeling options for software architects

The Altova MissionKit 2007 bundles Altova’s intelligent application development, data
management, and modeling tools at 50% off their regular prices. Available in a variety of

confi gurations tailored to the needs of software architects and XML developers, the Altova
MissionKit delivers the highest functionality and best product value. It’s your fi rst-class ticket

to the power, speed, and simplicity of Altova’s award-winning product line. Save a bundle!

Download the Altova MissionKit 2007 today: www.altova.com

Supports offi cial new

W3C standards:

XSLT 2.0, XPath 2.0

& XQuery!

JDJ.SYS-CON.com

hese are curious times just now for Java. In
one and the same month, Steve Jobs stands
up, and declares – referring to language
support on the new Apple iPhone – “Java’s

not worth building in. Nobody uses Java anymore.
It’s this big heavyweight ball and chain.” And in the
same month a company like Backbase, whose AJAX
JSF Edition is aimed at “Java developers who want to
leverage the JSF standard by creating a next genera-
tion rich component-based AJAX presentation tier,”
wins a ‘Technology of the Year Award 2007’ in the
category ‘AJAX Toolkits.’
 So, is Java toast, history, finished, a sucked or-
ange…or does it have plenty of “legs” yet, and Job’s
remark was just a temporary techno-backlash such
as all languages must resist from time to time?
 Bruce Eckel, who has since 1986 has published
six books and over 150 computer articles, views this
backlash as inevitable, foreseeable almost:
 “This backlash has only been necessary because
of Sun’s death grip on the idea of ubiquitous, omni-
scient Java. It was admirable once, but a language
only evolves if its designers and advocates can
acknowledge problems. Pretending that a language
is successful in places where it’s not is just denial.”
 But the Jobs declaration strikes as some as being
a little incongruous.
 “Am I the only one that finds this interesting since
the format Apple is supporting for HD content is
BluRay, which uses Java for all the interactive menus
or BD-J discs,” notes Danny Mavromatis. In other
words, Jobs “is supporting a next-gen format which
supports a technology that he claims nobody uses
anymore.”
 Jobs’s remark was made in an interview with New
York Times technology correspondent John Markoff,
but there must be more than a suspicion that it
was calculated to help generate exactly the kind of
massive publicity that will be necessary if Apple is to
come anywhere near selling the 10 million iPhones
that Jobs was predicting for 2008.
 Richard Sprague offers a cautionary tale:
 “I remember the lessons I learned working
with the Newton team many years ago. I was in
Apple’s marketing department at the time and we
did this big fancy user study which basically proved
that nobody would buy the thing at the price and
functionality we were building. So what did we do?
We shoved it into the market anyway because it
was “cool”. Cool is great, but you still need to make
phone calls.”
 Back to Eckel, though. Here is his take on a major
flaw in Java versus AJAX:

 “So Java has been around for 10 years and ap-
plets are not the primary way that we interact with
the web. I think the main reason for this is the instal-
lation problem, another area of Java that wasn’t well
thought-out. In fact, why do we like AJAX?
 It’s clearly not because JavaScript is so easy to
work with — JavaScript cross-platform problems
are the reason people have avoided it in the past.
AJAX is popular because we know that the neces-
sary software for the client side is already installed.
 Someone had to figure out how to deal with the
cross-platform issues for JavaScript first, but if JRE
installation was trivial, everyone might have just
created Java applets. But they didn’t, applets are not
ubiquitous, and everyone got excited about AJAX
instead. So AJAX became the favored technology for
RIAs.”
 According to Eckel, the obvious contender,
instead of Java, for building RIAs is Flash, and Flex in
particular.
 “It’s clear that we can’t wait for Sun to fix all of
Java’s problems,” he writes. “Open-sourcing Java
might, eventually, have a huge impact on repairing
Java’s deficiencies. For example, work on the JMF
might get resurrected. Maybe installation issues
will even be fixed someday. The possibilities might
be limitless, but if you need to solve problems
now, then the solution is to hybridize parts of the
language.”
 By way of explaining this concept of “Hybridizing
Java,” Eckels explains that in fact we do this already:
 “You don’t insist on using a Java database for
an application; you use a specialized system like
MySQL or Oracle. Sun is directly supporting the
development of JRuby for hybrid Java/JRuby
programming. We are seeing other special-purpose
languages arise to solve specialized problems. Why
insist on using a Java library for UI if a specialized
system solves the problem better?”
 Let’s give the last word to Steve Benfield, veteran
technologist, who summarizes what he calls his
“technology lineage” as PowerBuilder -> Silver-
stream -> J2EE -> AJAX -> Flex.
 “If you are a Java technologist who thinks any-
thing Flash isn’t enterprise ready,” Benfield states,
“then you need to reshift your thinking.” He adds:
 “We started using Flex 3 months ago and are
rocking and rolling – life is good. We can quickly
build the GUI we want, integration to our J2EE/
Spring/hibernate back end is seamless, and we anx-
iously await Apollo so we have a full desktop app.”
 Like I said, these are curious – and challenging
– times just now for Java.

From the Publisher

Is Java a
“Ball and Chain”?

 Editorial Board
 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 577 Chestnut Ridge Rd., Woodcliff Lake, NJ 07677

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677. Periodicals

postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to:
Java Developer’s Journal, SYS-CON Publications, Inc.,
577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

©Copyright
Copyright © 2007 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is Sr. Vice-

President, Editorial & Events

of SYS-CON Media. He is

Conference Chair of the AJA-

XjWorld Conference & Expo

series and of the “Real-World

Flex” One-Day Seminar

series. From 2000-6, as first

editorial director and then

group publisher of SYS-CON

Media, he was responsible

for the development of all

new titles and i-Technol-

ogy portals for the firm,

and regularly represents

SYS-CON at conferences

and trade shows, speaking

to technology audiences

both in North America and

overseas. He is executive

producer and presenter of

“Power Panels with Jeremy

Geelan” on SYS-CON.TV, and

is actively helping build out

the AJAXWorld brand as well

as developing entirely new

Conferences and One-Day

Seminars for SYS-CON Media

& Events.

jeremy@sys-con.com

Jeremy Geelan

T

3February 2007

The Object Database
With Jalapeno.

Give Your POJOs
More Mojo.

The object database that runs SQL faster than relational databases now comes with InterSystems
Jalapeño™ technology that eliminates mapping. Download a free, fully functional, non-expiring copy at:

InterSystems.com/Jalapeno1P

˜

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 1-07 CacheJal1 JDJ

intersystems_jal1_jdj:Java Ad compsC 5.0 1/16/07 2:32 PM Page 1

5February 2007JDJ.SYS-CON.com

FEBRUARY 2007 VOLUME:12 ISSUE:2

contents
JDJ Cover Story

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.
Periodicals postage rates are paid at Woodcliff Lake, NJ 07677 and additional
mailing offices. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 577 Chestnut Ridge Road, Woodcliff Lake, NJ 07677.

FROM THE PUBLISHER

Is Java a “Ball and Chain”?
by Jeremy Geelan.................................3

MIGRATION

Bridging the Gap Between
Open Source and
Commercial Applications
by Charles Lee.............................6

CLUSTERING

The Benefits of Virtualized
WebLogic Clustering
An opportunity to overcome cost inefficiencies
by Ajay Vohra..............................8

CODE

Code Development
in Distributed Environments
Requires effective build management tools
by Matt Gabor and Steve Taylor..............................14

DESKTOP JAVA VIEWPOINT

Those Who Can, Code;
Those Who Can’t, Architect
by Joe Winchester.............................18

WEB SERVICES

Enterprise Mashup Services
Part 2: Combining JSF and mashup services to make
mashup components
by Ric Smith..............................20

JSR WATCH

Behavioral & Philosophical
Aspects of Communities
by Onno Kluyt.............................34

26 Interview by Joe Winchester

The Object Database
With Jalapeno.

Give Your POJOs
More Mojo.

The object database that runs SQL faster than relational databases now comes with InterSystems
Jalapeño™ technology that eliminates mapping. Download a free, fully functional, non-expiring copy at:

InterSystems.com/Jalapeno1P

˜

© 2007 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 1-07 CacheJal1 JDJ

intersystems_jal1_jdj:Java Ad compsC 5.0 1/16/07 2:32 PM Page 1

JDJ.SYS-CON.com6 February 2007

President and CEO:

 Fuat Kircaali fuat@sys-con.com

President and COO:

 Carmen Gonzalez carmen@sys-con.com

Senior Vice President, Editorial and Events:

 Jeremy Geelan jeremy@sys-con.com

Advertising
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

Advertising Sales Director:

 Megan Mussa megan@sys-con.com

Advertising Sales Manager:

 Andrew Peralta andrew@sys-con.com

Associate Sales Manager:

Corinna Melcon corinna@sys-con.com

Events

Events Manager:

Lauren Orsi lauren@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Tami Lima tami@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Louis F. Cuffari louis@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Richard Walter richard@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

n late 2002, Javier Soltero, Doug MacEachern, Ryan
Morgan, Jon Travis, and I (the eventual co-found-
ers of Hyperic) began designing and architecting
an application management system that was to

become Hyperic HQ. We wanted it to be the manage-
ment system that bridged the gap between open
source and commercial applications and, furthermore,
we wanted it to use, be built on, and deployed to the
applications and operating systems that we managed.
 To achieve that goal, we set out to implement on
standards using a cross-platform language. Thus the
decision to use Java was pretty clear, as the abstraction
of the system-specific runtime freed us from having to
figure out native APIs and implement different paths to
achieve the desired functionality. We chose JBoss (then
mildly popular) as our J2EE application server. When
it came to our data persistence strategy, we knew we
wanted to stay away from developing our own (Javier
and I had already done that before for an Apache
configuration management project). Database portabil-
ity was important, as we had experimented with and
implemented PointBase, Cloudscape, and InstantDB
for that Apache configuration management project,
and knew we would be moving on from databases like
bad relationships. Much like bad relationships, you only
knew they were over after you had put a lot of effort
into them. By 2002, EJB2 had become a standard, and
Hibernate was very young and unproven. Compared
to EJB 1.0, EJB2 was, in our minds, ridiculously easy
to implement. We would use XDoclet to annotate the
code, and the whole thing would practically write itself!
 We set out to implement to EJB2. True, we were able
to quickly map out our object model, and the amount
of database-specific SQL was kept to a minimum. We
wrote our own tools that functioned as Ant tasks and
allowed us to create and populate database schemas
for different databases that we supported. However,
the runtime was handled by container-managed persis-
tence (CMP); we had no need for bean-managed per-
sistence (BMP). Pretty quickly we ran into some issues
such as needing to specify an “order by” clause. While
EJBQL did not support “order by,” JBossQL did. We
thought, “We are only deploying in JBoss at the moment
and we will continue to maintain compatibility by de-
fining both EJBQL and JBossQL.” Everywhere an “order
by” was needed, we had defined both “@ejb:finder” and
“@jboss:query” XDoclet tags. We were diligent about
it for a while, but then pretty soon we’d forget to fix
queries in “@ejb:finder” when we fixed them in “@jboss:
query”. Then, after more time had passed, we would
just plain leave the “@ejb:finder” empty sometimes,
especially when we needed outer joins, grouping, or
other SQL queries. Since EJBQL did not support the full
set of standard SQL syntax, we began to add “@jboss:
declared-sql” tags, again a JBoss-specific declaration.

 At least we had the CMPs working as we needed
them. We were getting caching of CMPs, so we were
gaining some optimization. However, it was clear that
the performance of CMPs would not be acceptable
in some areas. In our case, we collected a voluminous
amount of metric data. No matter how much we tried
to configure JBoss to not lock pessimistically, we could
not get HQ to work with metric data as CMPs without
locking up everywhere. We were resigned to using SQL
statements and JDBC to access the metric data directly.
Once we went down that route, it was easy to decide to
follow the same pattern elsewhere in the product. How-
ever, since we eventually settled on supporting Post-
greSQL and Oracle, these code paths would sometimes
require database-specific SQL to get the right behavior.
Speaking of pessimistic locks, half of our issues became
embroiled in transaction demarcation to avoid the
dreaded TransactionRolledbackLocalException (the
telltale sign of transaction deadlocks). We had to mark
every API as transaction REQUIRED, REQUIRESNEW,
SUPPORTS, and NOTSUPPORTED through trial and
error. We had been pulling our hair out for the past few
years over transaction issues. We implemented our own
caching to get around some of these problems, even
forking our own version of XDoclet to inject caching
behavior into EJB2. There were other issues such as
paging of the result set, for which there’s absolutely no
support in EJB2.
 Don’t get me wrong, we were able to get this far
with EJB2. We are pretty proud of what we have put
together in Hyperic HQ, and we accomplished what
we set out to do. However, it’s 2006 and the landscape is
very different. Hibernate has emerged as the runaway
preferred object relationship mapping (ORM) tool, and
for good reasons, too. With the problems that we had
faced with EJB2 and the difficulties with new feature
implementation, we knew that the right thing to do
was to move forward to Hibernate. However, the task
seemed daunting, especially since we had over 80
entities and many tweaks in our application to make it
work just right. Frankly, I just didn’t think we could ever
do it in a reasonable amount of time. However, in the
fall of 2006 we bit the bullet and just did it.
 It was not the gradual migration that we thought it
would be. No, we converted wholesale to Hibernate,
and we did it fairly efficiently as well. The change oc-
curred between versions 2.7.6 and 3.0 of Hyperic HQ,
with the bulk of the work occurring in just about three
weeks. The whole team definitely pulled together for
this effort. In my forthcoming articles, I will detail how
we went about the conversion and the patterns that
we adopted. Hopefully it will benefit others who are
in the same boat as we were. We knew that we were in
a bad relationship with EJB2, and that it was time to
move on.

Migration

Bridging the Gap Between Open Source
and Commercial Applications

I

Charles Lee is

vice president

of engineering

at Hyperic.

by Charles Lee

JDJ.SYS-CON.com8 February 2007

cross the BEA product family,
the principle mechanism for
meeting the twin require-
ments of scalability and

availability for business-critical
applications is clustering WebLogic
application servers. So clustering
WebLogic application servers plays
a foundational role across all BEA
products and provides the underpin-
nings for the AquaLogic Service Bus
that provides a services infrastruc-
ture for Service Oriented Architec-
ture (SOA).
 WebLogic clustering does a com-
petent job of meeting the principal
twin goals of scalability and avail-
ability, but injects some new prob-
lems into the mix, which have nega-
tive implications for the business
objectives that demanded clustering
in the first place. In other words,
WebLogic clustering keeps the lights
on, but introduces cost inefficiencies
in managing the services infrastruc-
ture, especially in the context of SOA.
So, how does basic clustering work?
What are its benefits? How does it
introduce inefficiencies, specifically
in the context of SOA? How are these
WebLogic clustering inefficiencies
overcome through virtualization?
These questions are addressed in this
article.
 Let’s start with a quick overview of
basic WebLogic clustering – touch-
ing on the key features and benefits
– followed by a discussion about how

basic WebLogic clustering introduces
cost inefficiencies into the mix, and
how these inefficiencies are exacer-
bated by SOA. Finally, we’ll introduce
the key features and benefits of virtu-
alized WebLogic clustering, and offer
some conclusions related to virtual-
ized WebLogic clustering.

Basic WebLogic Clustering
 Basic WebLogic clustering is
comprised of identically configured
managed WebLogic server instances
that can be managed as a unit from
an administration server. All the
managed servers, in a cluster, belong
to the same WebLogic domain,
whereby each domain defines a
set of interrelated resources. Each
domain can, of course, define mul-
tiple clusters. A cluster, however,

can only be associated with a single
domain and a single administration
server.

Key Features
 Basic WebLogic clustering offers
following key features:
• The core capability of clustering is

the replication of critical applica-
tion components and their state
across clustered managed servers,
thereby creating the possibility for
auto-matic application failover
from one managed server instance
to another.

• This replication capability is
 bolstered through two related
 capabilities:

– Replication of the Java Naming
Directory Interface (JNDI) tree
that contains references to
these objects. Remote clients
use the JNDI tree to discover
these objects.

– Clients that need to interact with
these replicated objects use rep-
lica-aware stubs that are aware
of all the replicas in the cluster.

• The ability to migrate a complete
managed server automatically to
another machine selected from
a predefined set of available
machines is important for migrat-
ing singleton services that can’t be
replicated.

• WebLogic clustering provides
plug-ins for Web servers, which
add load-balancing capability for

Clustering

by Ajay Vohra

The Benefits of Virtualized
WebLogic Clustering

A

Ajay Vohra is a Senior

Solutions Architect at Data-

Synapse, Inc., (www.data-

synapse.com). His current

focus is J2EE application

server virtualization. Ajay

has an MS in computer sci-

ence from Southern Illinois

University in Carbondale,

IL, and an MBA from the

University of Michigan Ross

School of Business at Ann

Arbor, MI.

avohra@datasynapse.com

An opportunity to overcome cost inefficiencies

Basic clustering requires provisioning the cluster for peak demand,
which leads to a number of cost inefficiencies that have a

multiplicative effect across the application set and can quickly add up,
consuming significant chunks of any IT budget”

“

JDJ.SYS-CON.com12 February 2007

Clustering

balancing HTTP requests across
managed server instances. These
Web server plug-ins support
HTTP session replication and can
automatically detect changes in
clusters’ managed server set.

• Basic WebLogic clustering uses
multicast and socket-to-socket
network communications to imple-
ment the features discussed above.

Key Benefits
 As we alluded to at the outset,
basic WebLogic clustering offers two
key benefits:
• The first benefit is scalability.

The overall capacity of a cluster

to meet demand can be increased
by adding more managed server
instances to it. However, in basic
WebLogic clustering, the process
of adding new managed server
instances to a cluster in response
to increased demand is largely
manual in nature.

• The second benefit is increased
availability. The application
failover capability based on the
replication of state and critical
application components across
clusters’ managed server set and
the ability to migrate complete
managed server instances auto-
matically to a different machine

offer higher availability for appli-
cations deployed on a WebLogic
cluster.

 These capabilities and benefits
are impressive and work fairly well
in practice. But, didn’t we say some-
thing about cost inefficiencies?

Cost Inefficiencies
 Basic WebLogic clustering offers
some solid benefits, but introduces
the following cost inefficiencies:
• Each application deployed to a

cluster needs to be sized for
 the cluster. This involves estimat-

ing peak demand for the applica-
tion and provisioning enough
managed server instances in the
cluster so peak demand can be
met. This process is repeated for
each application. Provisioning
for peak demand creates large
pockets of underutilized hard-
ware infrastructure capacity. This
underutilized capacity creates
cost inefficiencies, because each
hardware resource has capital,
operational, and administrative
costs.

• The second issue is that each
managed server instance needs
to be provisioned with WebLogic
software and administered to
be brought online as part of a
WebLogic cluster. This basically
creates inflexible cluster silos that
consume significant administra-
tive costs and are largely inflex-
ible in terms of their configu-
rability into different application
clusters.

 This brings us to the issue of how
cost inefficiencies get exacerbated in
the context of SOA.

Exacerbation of Cost Inefficiencies
Under SOA
 SOA is about creating standards-
based, interoperable, reusable ser-
vices that can be loosely coupled to
orchestrate complex business pro-
cesses. In the BEA product family,
the AquaLogic Service Bus provides
a reliable hub-and-spoke integration
system so that arbitrary services can
be loosely coupled though two key
mechanisms – proxy services and
configurable message flows. Figure 1 Architecture for virtualized WebLogic clustering

 Naturally, AquaLogic promotes
service reuse, but its execution envi-
ronment is based on basic WebLogic
clustering. This means that the cost
inefficiencies introduced earlier are
exacerbated in the context of Aqua-
Logic, because the more you adopt
SOA in your organization, the harder
it is to predict the demand profile on
a specific service. This is because a
given service can be configured into
arbitrary business processes. What
all this means is that the problem
of overprovisioning is exacerbated
in the context of AquaLogic. In fact,
perhaps anticipating this, AquaLogic
provides a dashboard that provides
alerts related to the service levels
configured in AquaLogic. However
somebody has to react to these alerts
manually, which brings us to the
topic of virtualized Weblogic cluster-
ing and how it helps overcome cost
inefficiencies.

Virtualized WebLogic Clustering
 Virtualized WebLogic clustering,
as the name implies, virtualizes the
cluster’s managed server set, both in
terms of size and membership. The
members of this set are the machines
on which the managed server in-
stances are run.

Key Features
 The key features of virtualized
WebLogic clustering are as follows:
• Virtualized WebLogic clustering

adds a control plane on top of
basic WebLogic clustering. This
control plane is managed by a
centralized broker and consists of
distributed agents installed on a
predefined set of machines.

• The predefined set of machines,
with distributed agents, becomes
the universe from which the

 managed server set for a given
cluster is mapped at any given
time. Each machine with a distrib-

uted agent is capable of running
one or more instances of a man-
aged server.

• A virtualized WebLogic cluster’s
managed server set is automatical-
ly expanded or contracted based
on configurable policies, which
dictate how the cluster should
adapt and respond to its managed
server set in response to varying
demand.

• The broker, through its distrib-
uted agents, effects changes in the
managed server set.

• Varying demand is characterized
in terms of configurable JMX-
based statistics, such as WebLogic
Throughput, WebLogic Queue Size,
and Active Thread User Count,
among others, that are supported
by WebLogic application servers
and are constantly probed and
measured at each managed server
instance by the distributed agent
and aggregated at the centralized
broker.

• HTTP clients access the cluster
in the same way they would in
a basic clustering scenario. The
virtualized WebLogic clustering
doesn’t introduce any new issues
in terms of the load balancing of
HTTP requests.

• For non-HTTP clients, such as EJB
clients, it’s imperative that the
clients can create an initial JNDI
context based on a JNDI Provider
URL. The broker provides a Web
Service that helps in the discovery
of the virtualized managed server
set and thus the construction of
the JNDI Provider URL for creating
an initial JNDI context.

• The broker is responsible for pro-
visioning all required software to
the distributed agents, including
WebLogic application server

 software components and Java
software development toolkit

 software.

 The basic architecture for virtual-
ized WebLogic clustering is summa-
rized in Figure 1.

Key Benefits
 The key benefits of virtualized
WebLogic clustering are as follows:
• Virtualized WebLogic clustering

can dynamically change the man-
aged server set in response to con-
figurable policies – clusters don’t
need to be provisioned for peak
demand, which addresses the con-
cerns of cost inefficiencies.

• The general benefits of virtualiza-
tion are now well understood. It
improves infrastructure utilization
at all levels of the IT stack. From
the adoption of virtualization at
the operating system level to the
application server level, virtualiza-
tion can provide direct benefits
holistically or independently.

• Through a centralized dashboard,
software is automatically moni-
tored, controlled, and provisioned
to agents making cluster manage-
ment and administration simpler
and more cost-effective.

Conclusion
 Basic WebLogic clustering is criti-
cal for scalability and availability
and required for business critical
applications. However, basic cluster-
ing requires provisioning the cluster
for peak demand, which leads to
a number of cost inefficiencies
that have a multiplicative effect
across the application set and can
quickly add up, consuming signifi-
cant chunks of any IT budget. The
virtualization of WebLogic clusters
presents enterprises with an op-
portunity to help overcome cost
inefficiencies by developing an
environment that can dynamically
adapt a cluster to its demand
profile per predefined configured
policies.

Basic WebLogic clustering is comprised of identically
configured managed WebLogic server instances

that can be managed as a unit from an administration server”
“

JDJ.SYS-CON.com14 February 2007

he key to successful build manage-
ment in distributed environments is
a foundational commitment to con-
sistency, repeatability and portabil-

ity. This is just as true for small, homoge-
neous development environments using
in-house, scripted build systems, as it is for
large, complex environments, where a new
class of non-scripted, distributed build-
management tools are now available.
 In small- and medium-sized environ-
ments, using a properly implemented
in-house build system can mitigate many
of the risks and challenges associated with
builds. Additionally, with a few simple
steps, the burdensome task of developing
and maintaining build scripts can be sig-
nificantly reduced, using build tools such
as Make and Ant.

Build Management Evolution
 Application builds have traditionally
been managed using a rules-based pro-
gram derived from Make, the world’s old-
est, best-known build tool. Make controls
the generation of executables and other
non-source files from a program’s source
files. There are many Make versions, each
with a unique file syntax that precludes
portability between development tools,
operating systems, or even compilers
within the same operating environment.
 But Java development requires a new,
platform-independent build tool, which
led to the creation of Apache Software
Foundation’s Java-based Ant, so-named
by developer James Duncan Davidson
because, “…it is a little thing that can build
big things.” Ant eliminates Make’s plat-
form-dependent wrinkles, and is extended
not with shell-based commands but Java
classes. Configuration files are XML-based,
calling out a target tree where various tasks
get executed. Each task is run by a Java
class that implements a particular task
interface.
 Ant is powerful, but the XML configura-
tion scripts can create limitations. XML
does not handle conditional logic ef-

fectively and it is, therefore, difficult to use
Ant to write “intelligent” build scripts that
support robust batch processing.
 Additionally, many development proj-
ects include Java and non-Java compo-
nents that require both Ant and Make,
as neither handles both languages. Script-
ing for the two is very different. Make
scripts are the input to Make programs
and dictate how to build each software
component.
 A Make file tells the Make program
which binaries are to be created from
which source modules. Make rules are
then “fired” based on out-of-date condi-
tions between source and object. In con-
trast, Ant/XML scripting uses serial batch
processing. Rules for creating Java binaries
such as .jar, .war, and .ear are handled
statically for each step or “task” in the XML
script. Listing 1 shows the differences
between Make and Ant scripts for a similar
type of build task.

 For either approach, the programmer
must understand not only how the appli-
cation is constructed, but also the specific
syntax requirements of the build scripting
language they are using. Additionally,
Make and Ant/XML scripts are not re-us-
able because static application informa-
tion is coded into the script.

Make And Ant/XML Challenges
 As Client/Server and Java development
has evolved, so has build complexity,
especially with Make. When Make is used
recursively (one Make file per final target
executable, or binary – the most common
method of managing large build processes),

an application with 50 binaries would
require 50 Make files plus a “driver” Make
file.
 The system build is completed by calling
the Make program repeatedly and passing
a different Make file each time. Depen-
dency checking between the individual
Make files is impossible, which means
large application Make files can’t be man-
aged by a single Make file. Developers get
around Make challenges through clever
file-ordering to track dependencies, along
with object-borrowing and multi-system
parallel building techniques to reduce the
associated long system build times.
 Although most Ant build systems do
not appear to be as complex as many
Make-based build systems, it is only a
matter of time. As Ant scripts suffer from
being passed through different developer’s
hands, as new technology emerges that ef-
fects the way Ant scripts are coded or used,
and as applications grow more complex,
Ant will encounter many of the problems
associated with a Make-based system.
 The key to avoiding this is to implement
best-practices for manual scripting start-
ing with an in-house build system, while
monitoring factors that would signal the
need to move to an automated, non-
scripting approach.

Solving Typical Scripting Problems
 Scripting challenges are easier to solve
in small, homogeneous development en-
vironments confined to a single language
and target operating system. The first step
is to shift from a developer-centric view
of builds to a team-centric view, and from
the notion of scripting “my build solution”
to scripting “our build solution.”
 Build inconsistency is the toughest
problem. If developers use their own
build scripts in the language or tool of
choice, it can be difficult to know whether
problems result from bad code or a bad
build. Build administrators must stan-
dardize on a single scripting approach
that best suits the language being used.

Code

by Matt Gabor
and Steve Taylor

Code Development
in Distributed Environments

T

Matt Gabor is a senior

developer, OpenMake

Software Corporation.

He has an extensive

background in the use and

development of Eclipse

Plug-ins and is expert

in the Openmake Build

Plug-in. His technical skills

includes J2EE, J2SE, and

.NET development.

Requires effective build management tools

15February 2007JDJ.SYS-CON.com

 The first step to reducing build inconsistency between
individual developer’s build scripts is to develop build script
templates that can be used as a basis for all build scripts. All
builds require the same basic information: source code, com-
piler, and final target. Individual developers can populate the
build script templates with their own build specifics; i.e., the
source code location, compiler location, and a final-target de-
scription. Build script templates should be well-commented
and clearly organized to ease the process of populating the
template with build specific information.
 A major contributing factor to build inconsistency is a lack
of compiler and third-party library standardization. In a dispa-
rate and distributed build environment, developers frequently
build against different versions of compilers and third-party li-
braries. This makes it difficult to re-create builds and diagnose
problems. To promote standardization, all compilers should
be centralized on a network drive accessible by all developers,
on a clean and “locked down” machine. The build script tem-
plates should specifically reference the standard compiler ver-
sions on the mapped network drives, ensuring that all builds
occur against consistent compiler versions. All third-party
libraries should similarly be consolidated on a shared network
drive so the latest, approved versions are used.
 Another commonly faced problem is lack of build porta-
bility. Builds often work only on an individual developer’s
machine, which by default becomes the “production” build
machine. This approach can cause severe problems when
trying to track down bugs that are discovered once an ap-
plication has been released to Production. To solve this prob-
lem, development teams should standardize their directory
structure. All developers should work on code in the same
directory structure. If a versioning or CM tool is used, pull
the directory structure from it; if not, enforce strong directory
conventions for all developers.
 Portability problems also can be mitigated by using global
variables in the build script templates that identify the root
location for all source code, compilers and common librar-
ies. By setting environment variables such as SRC_HOME,
COMPILER_HOME, and COMMON_HOME, the same build
scripts should work on all machines. Using global variables
in the build script templates also reduces the amount of
template editing that is required by developers.
 Finally, isolate the build scripts to just that: builds. Too often,
“build” scripts include substantial pre- and post-build logic un-
related to the build. Pre- and post-build logic can be extremely
complex, especially as an application matures and develop-
ment is being performed on multiple versions simultaneously.
The Ant script in Listing 2 demonstrates a build script with a
very basic and generic deployment portion. (Listings 2–3 can be
downloaded from the online version of this article at http://
java.sys-con.com)
 Rather than writing pre- and post-build logic within a build
script (where the functionality is often limited by the scripting
language or tool), place the non-build logic in external scripts.
The external scripts should be written in a scalable, lightweight,
and cross-platform language such as PERL or PYTHON. Tightly
focused build scripts can then have built-in hooks to the exter-
nal build utility. Listing 3 takes the overly complex build script of
the prior example and replaces it with a call to an external script.
 By partitioning the build scripts in this way, developers (or
build masters) who encounter build problems can drill down to
the root cause very rapidly. Additionally, as development grows
in complexity and new languages or target Operating Systems

are added, the in-house build utility can scale more effectively.
 For example, consider a C and C++ development shop that
uses an entirely Make based build system with all pre- and
post-build logic written in the Make scripts. When the develop-
ment shop decides to add a Java component to their applica-
tion, they are faced with writing an Ant component (equivalent
to their existing Make scripts) that manages all of Java-related
pre-build, build, and post-build logic.
 However, if the development shop has a build utility, written
in PERL, that executes Make scripts limited to build execution,
they only have to write Ant scripts that handle the Java builds,
and can use the existing PERL framework as a basis for all of the
non-build functionality.

Dealing with multiple languages
 Another common problem in complex distributed
environments is build scripting inconsistency resulting from
development in multiple languages. Build administrators
can either force a single scripting language, or maintain differ-
ent build scripts for different teams (Make, for example, works
for C and C++, but is not particularly well suited for Java). The
best approach is to maintain different scripts with isolated
build functionality, using a consistent, cross-platform, light-
weight scripting language for all non-build functionality (e.g.,
retrieving code from a CM tool, moving files around, deploying
binaries etc.). Separating build functionality from all non-
build functionality limits variances. There is no reason to be
using Make or Ant scripts to copy files around or make logical
decision during batch processing.

Steve Taylor is an experienced

senior developer, bringing 17 years

of expertise with Client/Server and

mainframe application develop-

ment and system integration. Prior

to founding OpenMake Software

Corporation, Mr. Taylor served

as a Lead Technical Consultant

responsible for the successful

implementation of applications

into the production environment.

In this capacity, he became expert

in the use of various configuration

management tools and recognized

the need to build large applications

using a nightly process. At this time

he began developing the standard-

ized versioning and build proce-

dures which have since become

Openmake. Mr. Taylor received

his Bachelors of Science Degree in

Computer Science/Mathematics

from the University of Illinois-CU.

JDJ.SYS-CON.com16 February 2007

Code

 A common problem in such complex
environments is the lack of an effective audit
trail. Log all build script templates and “non-
build” script components, and make sure
audit trails track source code to executable.
For each action that touches source code
(check-out, move, compile etc.), embed a
logging message into the script templates.
This is facilitated by adding a basic Bill Of
Materials report to the in-house build solu-
tion, including:
1. Name of the final target being built
2. Build machine environment information
3. Compiler version information
4. Version information derived from the CM

tool for every dependency included in the
build

Identifying Breaking Points
 There are a number of critical “breaking
points” that cause in-house build systems
to become cost- and/or resource-prohibi-
tive. When they occur, development teams
generally begin to consider an automated,
non-scripting environment.
 One of the first breaking points occurs
when the amount of time it takes for an
application to build begins to limit unit- and
integration-testing effectiveness. Only the
items that need to be built should be built,
in a true incremental approach. Another
breaking point is excessive problem-resolu-
tion turnaround, because the development
environment scales beyond the capabilities of
the in-house scripted manual build system.
Developers find themselves spending most
of their time tracking down what source code
and common libraries went into a built object
rather than resolving coding problems.
 A sure sign that developers are reaching
the limits of manual scripting efficiency
is when they find themselves consistently
spending as much as an hour a day work-
ing on build problems (either their own, or
debugging build problems of a centralized
CM team). Some companies actually assign
a dedicated CM team whose sole responsibil-
ity it is to execute builds. Developers find
themselves waiting for the CM team to build
their applications before they can move on to
the next development effort. It can reach the
point where the centralized CM team simply
cannot keep up with the demand, especially
when builds are cross-language, cross-plat-
form and incredibly complex.

Migrating to Automated Build-Management
 To solve the problems described above,
teams within medium- to large-sized devel-
opment environments are now turning to

tools based on a true Client/Server archi-
tecture with a central build knowledge base.
Introduced over the past five years, this new
class of build tool provides a standardized
method for creating and managing Build
Control files that replace Make and Ant/XML
manual scripting. This approach eliminates
the portability issues of rule-based programs
derived from Make, while resolving the
standardization challenges associated with
scripted build processes based on Ant/XML.
 One example of this approach is a build
management tool that weaves together hu-
man and machine intelligence to automate
and standardize the enterprise build process.
It is possible to incorporate a browser-based
user interface and a Tomcat or WebSphere
Application Server to provide access to a
Knowledge Base Server. Enterprise-based
features allow for the connection to multiple
remote build servers. Simple Object Access
Protocol (SOAP) is used as the communi-
cation layer between the browser and the
application servers.
 Developers interface through a web cli-
ent, a command line interface, or indirectly
through IDE plug-ins. Build meta-data is
stored and managed via the central Knowl-
edge Base Server and reused by multiple de-
velopers to generate Ant/XML scripts for Java

support, or to generate “Make”-like scripts for
traditional build requirements. Build Control
files can be generated to build a single object
(supporting developer daily compile activi-
ties) or a complete application (containing
hundreds of inter-dependent modules).
 When a complete application Build Con-
trol file is generated, it eliminates the problem
of recursive Make and ensures the accuracy
of incremental builds. Builds can be man-
aged from an empty build directory pulling
source code from a pre-defined search path,
or by retrieving source code from a version
management tool. Build management also
allows control over environment variable set-
tings such as LIB, INCLUDE and CLASSPATH
so that, regardless of the build machine, the
build results are the same.
 Build management does not replace Ant
for completing Java builds, but rather extends
the use of Jakarta Ant without the need for
manually coding XML scripts. In the place of
hard-coded Make and Ant/XML scripts, for
instance, its rules engine takes advantage of
a knowledge base of build meta-data, such as
Target Name and Dependency information,
to dynamically generate portable, PERL-
based build processes at build time that
can be referenced by multiple development
teams.

Listing 1:
GENERIC MAKE BUILD SCRIPT
=================================
Builds the application executable
=================================
application: application.c lib_a.o lib_b.o lib_c.o
 @cc g -qcpluscmt -qidirfirst -I. -I/sys_apps/ref_dir/release/include -I/usr/in-
clude -o./exe/application $? -bE:/sys_apps/ref_dir/release/include/application.imp

lib_a.o: lib_a.c
 @cc g -qcpluscmt -qidirfirst -I. -I/sys_apps/ref_dir/release/include -I/usr/in-
clude -o lib_a.o -c $?

lib_b.o: lib_b.c
 @cc g -qcpluscmt -qidirfirst -I. -I/sys_apps/ref_dir/release/include -I/usr/in-
clude -o lib_b.o -c $?

lib_c.o: lib_c.c
@cc g -qcpluscmt -qidirfirst -I. -I/sys_apps/ref_dir/release/include -I/usr/include
-o lib_c.o -c $?

GENERIC ANT SCRIPT
 <!-- === -->
 <!-- Compiles source code and packages application.jar
 -->
 <!--=== -->
 <target name=”compile” depends=”prepare”>
 <javac srcdir=”./src”
 includes=**/*.java”
 destdir=”./build”
 debug=”off”
 deprecation=”off”
 optimize=”on”
 </target>

 <target name=”application_jar” depends=”compile”>
 <jar jarfile=”./build/application.jar”
 basedir=”./build/classes”
 compress=”false”
 includes=”com/**”/>
 </target>

ILOG JViews 8.0, the newest release of the ILOG Java-based visualization

products, addresses all aspects of advanced visualization.

ILOG JViews 8.0 provides:

• Key visual components: diagrams, dashboards, maps, charts,

Gantt charts

• Advanced services: automatic graph layout, high-performance display

for large data sets

• Several deployment techniques, including desktop clients, Ajax-enhanced

Web applications, Eclipse’s Rich Client Platform (RCP) and portals

© 2007 – ILOG S.A. – ILOG, CPLEX and the ILOG logotype are registered trademarks, and all ILOG product names are trademarks of ILOG.

Why paint with your fingers?
Java visualization components for desktop and Ajax

• A proven track record in the most demanding industries:

IT, telecommunications, transportation, utilities, energy and defense

Paint your future with ILOG JViews 8.0.

Get your free ‘Ajax for
Graphics-Intensive Web
Applications’ white paper
at ilog.com/jdj/ajax

JDJ.SYS-CON.com18 February 2007

t the moment there seems to
be an extremely unhealthy
obsession in software with the
concept of architecture. A col-

league of mine, a recent graduate, told me
he wished to become a software architect.
He was drawn to the glamour of being
able to come up with grandiose ideas
– sweeping generalized designs, creating
presentations to audiences of acronym
addicts, writing esoteric academic papers,
speaking at conferences attended by
headless engineers on company expense
accounts hungrily seeking out this year’s
grail, and creating e-mails with huge cc
lists from people whose signature footer is
more interesting than the content. I tried
to re-orient him into actually doing some
coding, to join a team that has a good
product and keen users both of whom are
pushing requirements forward, to no avail.
Somehow the lure of being an architecture
astronaut was too strong and I lost him to
the dark side.
 He’ll be in good company though. I
was recently called to a customer who
expressed interest in a software tool I’m
working on. I came armed with the latest
build of the product, looking forward
to the opportunity to test some ideas
and concepts in front of potential users.
Instead I found myself in front of the
customer who had also invited a competi-
tor in order to create a conference room
product shoot out. While I had my PC with
running code to show, my opponent had
brought along a briefcase full of Power-
Point presentations. Their slides were im-
pressive: good use of color, animation, and
a generous splattering of buzzwords and
acronyms. Despite the fact I had working
code to showcase, the discussion quickly
degenerated into a discussion about the
fact that mine was a so-called “fat” client,
in fact a pretty lean Eclipse RCP-based
product, while the opposition had a “thin”
client.
 The truth was the opposition didn’t have
a thin Web-based offering; their current
product was built six years ago as a desktop
application that could be downloaded
as an 87M applet. However, they were in

the process of rewriting it all to run in a
lightweight Java EE container as portlets. In
other words, they had nothing. They were
peddling vaporwear. Worse than that, de-
spite the fact their company had a perfectly
good product offering that I was prepared
to go head-to-head with, they seemed to
have given up on making it more usable
and instead opted for the deep thought
option: a total rewrite just to suit the whims
of today’s architectural fashion.

 I kept wanting to take the customer’s IT
manager and shake him back to reality;
however, he somehow got drawn into their
trap and was asking me architectural ques-
tions rather than focusing on whether the
product I had brought to show and tell was
going to make his users more productive.
 Remember the kid in the playground
who knew the name of a band you didn’t,
or who had a new album? They were
cool; they had knowledge we didn’t; and
whether or not it was any better didn’t
matter, it was new and shiny and we had
to have it too. If we did, then we would also
be in possession of knowledge that others
didn’t own, and we in turn could be the
cool kid to someone else.
 This kind of atavistic worshipping of the
obscure and unknown piece of knowledge
is the personality disorder that plagues the
software industry and is somehow encour-
aged and admired by architects who are
never satisfied with what they have avail-
able to them to build software. They’re not
innovators or research pioneers pushing
knowledge forward though - such people
are hugely important as they invent the
future and redefine technology boundar-
ies. Instead these silver-bullet junkies just
latch onto ideas and fads for the sake of it,
because if nothing else it makes them ap-

pear ahead of the curve and in possession
of secret facts and information. As soon as
a project gets into trouble, they can launch
these facts at programmers and proclaim,
“Aha, it’s because you’re not using BOJOX
and NADA 2.0 combined with YML that
you have a bug” in front of the nervous
manager who wants nothing more than
to buy more time by telling his reporting
chain that he needs a year to do a total
rewrite. During this time, because nothing
ships, nothing can go wrong and, hope-
fully, the stock price will have grown to the
point the manager can cash in his options
in time to go be a coward somewhere else.
 Meanwhile, the architects seem invin-
cible to failure and rise within the ranks of
their organizations, ordering fresh business
cards each year with the words “architect,”
“senior” or, for the power blowhards,
“distinguished” in the title. They are drawn
to the tar pit of attending and creating
presentations, or joining conference calls
with fellow architects who showboat their
knowledge of obscure standards specifica-
tions or bleeding-edge research projects.
They’ll have copies of Christopher Alexan-
der books in their office and spend hours
googling for obtuse and arcane quotations
to lace their presentations with and gain
kudos from fellow fools.
 When confronted by such people,
recant the following mantra:

Code ships,
code runs,
code helps users,
get their job done.

 Remind any architects in your path that
presentation charts, e-mails, project plans,
line-items spreadsheets and so forth, are
all there to help the code ship on time
and to spec. The goal of everyone on a
project should be to spend as little time as
possible on tasks that distract from the job
of creating quality, tested, and shippable
code. Please architects, please understand
this, respect this, and quietly stay out of the
way of those good folk who prefer to spend
their day working with an IDE writing code
rather than composing e-mails.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Those Who Can, Code;
Those Who Can’t, Architect

A

Joe Winchester is

a software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

19February 2007JDJ.SYS-CON.com

����������������
�������������������������������

COPYRIGHT ©2007 SYS-CON MEDIA ALL RIGHTS RESERVED

������������������������������
���

��

������������������������
����������������������������

�������������������������������

��������������������������������

����������������������������������

����������������������������

�������������������

������������������������������
��������������������������

�����������������������������

���������������������������������

��������������������������

������������������

���������������������������������

�����������������������������������

�������������
�������

���

�������������������

������������������������
���������������

������

� �� ����������������
� � ����������

� �� ����������������
� � �������������

� �� �����������
� � ��������������������
� � ����������

� ��� ������������������������
� � ��������������������
� � ������������������������������������

���� �����������������������
� � �������������

���� ����������������
� � �����������������������
� � ���������������������������������
� � ������������������������������

���� ��������������������������
� � ���

���� �������������������
� � ����������������������
� � ������������������

��������������

���������������
�����������������������

���������������������

� ��� ���������� �
� �������������
� � �����������

������������������

��
���
��

���
��
��
����������������������������

��
��
��
��
���
���

���
��

����
��������

����

����������

����������
����������������������

����������������

�
������������

�
�������

�
�������������

�
�����������

� ������������

�
����������������

� ���

�
����������

�
������������

� ���

�
����

�
�������

� ��������������

���������������

�����������

�
�����������

� ����������������

�
���������������

�
�����������������

�
��������������������

�
������������������

� �����������

�
����

�
�����������������������

�
����������������������

�
���������������������

�
�����

�
�����������������������

����������

����������
����������������������

��

��
����������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
��������������������

����������
������������������������������

����������
����������

����������
����������

����������
������������������������������

����������
����������

��
����������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
��������������������

����������������������
������������������������������

����������������������
����������

����������������������
����������

����������������������
������������������������������

����������������������
����������
����������

����������
����������������������

������������

�������������������������������������
����������������������

����������
�������������������������������

����������������������������

���
���

��

���

������������������������������

��������
������������

������������������������

��
������������������������

��������
����

JDJ.SYS-CON.com20 February 2007

n my previous article, “Enterprise
Mashup Services: Real-World SOA
or Web 2.0 Novelties?” (JDJ Vol. 11,
Issue 12), I discussed how a Java-to-

AJAX library such as Direct Web Remot-
ing (DWR) can bridge the gap between
mashup services implemented with
JavaScript and business services written
in Java, allowing developers to blend
corporate services with external services
such as Google Maps. The problem with
this approach is that it relies on AJAX
as an integration point, which entails a
fragile development platform as well as
the need to maintain browser-specific
code due to idiosyncrasies in browser
support for JavaScript — the primary
technology behind AJAX. In addition,
JavaScript lacks a standardized ap-
proach for componentizing code, mak-
ing applications written in it difficult to
consolidate and reuse. The solution to
these shortcomings is to pair AJAX with
a component framework. JavaServer
Faces (JSF) provides this foundation and
eliminates the complexities of JavaS-
cript — besides providing rich integra-
tion with the Java EE platform.
 A mashup component is a custom
JSF component that encapsulates the
code that operates on a mashup API.
Once created, the mashup component
eliminates the need to work with JavaS-
cript. Thus the code is both simplified
and easily reused, making the API ac-
cessible to both JavaScript experts and
less-experienced developers. The intent
of this article is to build on the concepts
introduced in the previous article and
present the tools to create enterprise-
ready components that encapsulate
mashup services.

Rich Components Versus
Mashup Components
 On the surface, JSF components
that abstract mashup APIs appear no
different than those that encapsulate
AJAX functionality. In fact, the concepts
that define both components are the
same; it’s the philosophy behind the
component definitions that differs.
AJAX-enriched components abstract the

complexities of JavaScript and provide
interactive visual effects. JSF compo-
nents that encapsulate mashup services
are created with the same intent; how-
ever, mashup components package
both visual effects and interactions
with services. So mashup components
represent Service Oriented Architectures
(SOAs) at a micro level within a larger
composite application. The example
used in this article is a component that
blends Google Maps with the Yahoo!
Geocoding API. The crux of this solution
is the tying of JavaScript events to event
handlers implemented with Java code.
This marriage lets mashup services work
in conjunction with those implemented
on the Java EE platform, which in the ex-
ample are isolated to services provided
by the JSF-managed bean facility.

Shale Remoting
 The Shale Framework, which can be
found on the Apache Web site (http://
shale.apache.org/), provides a rich Web
development framework that extends
JSF. Instead of going into the numerous
features that Shale provides, I’ll focus on
a single aspect, Shale Remoting, which
maps a server-side resource such as a
static JavaScript file or a method associ-
ated with a managed bean to a URL. For
example, Shale maps the URL faces/
remote/hellobean/welcomeUser to hel-
loBean.welcomeUser(), which calls the
welcomeUser method associated with
the helloBean managed bean. The URL
faces/static/com/thepeninsulasedge/
scripts/maps.js identifies a script file
located in a Java archive (JAR) under the
package structure /com/thepeninsu-
lasedge/scripts/.

 In short, Shale Remoting provides a
simple mechanism to implement AJAX
functionality in custom JSF components
that would otherwise require the imple-
mentation of a custom PhaseListener or
ViewHandler to handle XMLHttpRequests
and serve static resources. In this article,
Shale is used to map JavaScript event
listeners to methods defined in managed
beans. More specifically, it’s used to tie
Glisteners — JavaScript functions that re-
spond to events triggered by Google Map’s
GMap2 object — to methods implement-
ed in Java. Note that DWR could be used
to accomplish this task; however, Shale
provides tighter integration with the JSF
managed bean facility as well as the abil-
ity to serve resource files from archives.

Using Shale Remoting
 In the example that follows we
construct a simple managed bean (Hel-
loBean) that defines a method (wel-
comeUser) that’s invoked by a JavaScript
function in Figure 1.
 The function is called when a user en-
ters his or her name into a text field, and
a response for each event is displayed in
a div below the text field. Listing 1
shows the complete JSP page. The Hel-
loBean managed bean defines three
methods: welcomeUser, getParam, and
writeResponse.
 The latter two methods are simply
utility functions. The getParam method
extracts a value from the request string
via the RequestParameterMap for a
given parameter. The writeResponse
method writes a response to the
FacesContext, which is rendered to the
client and processed by an XMLHttpRe-
quest handler (more on this later).

Web Services

by Ric Smith
Enterprise Mashup Services

I

Ric Smith is a principal

product manager for Oracle’s

Java/JEE/SOA tool offering,

Oracle JDeveloper. Prior to

joining the Oracle JDeveloper

team, Ric worked for Oracle’s

consulting business as a

principal consultant, where he

specialized in Java EE architec-

ture and development. Before

his work in consulting, Ric was

a lead software developer at

Lockheed Martin. Ric holds

a Bachelor’s of Science in

Computer Science with honors

from the University of Arizona.

Part 2: Combining JSF and mashup services to make mashup components

 Figure 1 Shale Arch

21February 2007JDJ.SYS-CON.com

 The welcomeUser method is invoked
with the URL faces/dynamic/hellobean/
welcomeUser. This method extracts the
value associated with the username pa-
rameter from the request, manipulates the
extracted value, and then writes a response
to the client using the writeResponse
method. A parameter can be passed to the
welcomeUser method by using the URL
faces/dynamic/hellobean/welcomeUser?u
sername=Ric, which calls the method and
provides a name/value pair as a parameter.
Accessing the URL via a browser provides a
simple way to test this, and should display a
response similar to that shown in Figure 2.
 Once mapped to a URL, the wel-
comeUser method is easily tied to an
event listener that uses the JavaScript
XMLHttpRequest object to post to the URL
mapped to the method innovation. The
code to perform this operation is in Listing
2 and is contained in a file, scripts.js.
(Listings 2–11 can be downloaded from the
online version of this article at http://java.
sys-con.com).
 For simplicity’s sake, the Prototype
framework (http://prototype.conio.net/)
is used to manipulate XMLHttpRequest
objects — the AJAX.Request function
handles each request. The function
requires a URL, which is used to call the
welcomeUser method defined in the Hel-
loBean managed bean. The AJAX.Request
function also accepts a JavaScript object
as an argument, which defines the request
method (for example, POST or GET) as
well as the parameters to append to the
request string. The final argument passed
to the AJAX.Request function identifies a
handler used to process the response initi-
ated asynchronously by the request. In the
example, the response is handled by the
displayResponse function, which writes
the text of the response to a div identified
by the ID response. The $(…) notation is
shorthand for the document.getElement-
ById() JavaScript function and is a feature
of the Prototype framework.
 The welcomeUser function is fired on
the onkeyup event of the text field. With
each keystroke the user enters in the text
field, the welcomeUser function is called,
which invokes the method defined in the
managed bean. In essence, the managed
bean contains the logic to respond to each
JavaScript onkeyup event.

JavaServer Faces Components
 Now that we have identified a mecha-
nism to link Java code to JavaScript, let’s
quickly review the key facets of a JSF com-
ponent before putting the pieces together
to build our first mashup component.

There are essentially three elements to a
JSF component: behavior, presentation,
and tag definition. (Figure 3 shows the
class definitions for each element of the
component used in this article.)

Behavior
 Component classes characterize behav-
ior and extend the javax.faces.component.
UIComponentBase class or one of its
subclasses (Listing 2). Each component
class is also defined in the faces-config.xml
file shown as follows:

<component>

<component-type>

com.thepeninsulasedge.components.MapPanel

</component-type>

<component-class>

com.thepeninsulasedge.components.UIMap

</component-class>

</component>

Presentation
 A component’s presentation is delegated
to a separate class that extends the javax.
faces.render.Renderer class (Listing 3). A
renderer produces a graphical representa-
tion that need not be implemented with
HTML. The presentation could be repre-
sented by XUL, ASK, Telnet, or any number
of protocols. For our purposes the renderer
is used to generate HTML and JavaScript.
The JavaScript produced by the renderer is
used to post to URLs defined by the Shale
Framework as well as consume the Google
Maps API. Note that this compromises the
clean separation between presentation and
behavior implemented by the JSF compo-
nent architecture because behavior is now
also defined in the renderer. Unfortunately
this is a necessary evil when mixing JSF
with AJAX. Each renderer class must also be
defined in the faces-config.xml file shown
as follows:

<render-kit>

 <renderer>

 <component-family>

com.thepeninsulasedge.components.MapPanel

 </component-family>

 <renderer-type>com.thepeninsulasedge.compo-

nents.Map</renderer-type>

 <renderer-class>

com.thepeninsulasedge.components.MapRenderer

 </renderer-class>

 </renderer>

</render-kit>

Tag Definition
 The JSP tag representing the com-
ponent is defined by a subclass of the
javax.faces.webapp.UIComponentTag

class (Listing 4) and a tag library descrip-
tor (TLD) — an XML file that provides
metadata for the tag (Listing 5). The TLD
should be registered in the web.xml file
shown as follows:

 <jsp-config>

 <taglib>

 <taglib-uri>http://thepeninsu-

lasedge.com/jsf</taglib-uri>

 <taglib-location>/WEB-INF/

pc.tld</taglib-location>

 </taglib>

 </jsp-config>

Developing Mashup Components
with JSF and Shale
 As previously mentioned, the intent of

 Figure 2 Hello World with Shale

 Figure 3 Component Classes

 Figure 4 Rendered Map Component

JDJ.SYS-CON.com22 February 2007

this article is to build a JSF component
that encapsulates a mashup service and
provides the ability to link JavaScript
events that represent interactions with
the encapsulated service to methods
associated with a managed bean. Now
that you have a basic understanding of
the core technologies involved, let’s
take a look at an example of a mashup
component.

<tpe:map id=”gmap”

 initLat=”#{mapbean.initLat}”

 initLng=”#{mapbean.initLng}”

 zoomLevel=”#{mapbean.initZoom}”

 inlineStyle=”width:500px;height:500px;”

 key=”#{mapbean.key}”

 model=”#{mapbean}”/>

 The tpe:map component represents a
wrapper for the Google Maps API, and it
generates the HTML and JavaScript shown in
Listing 6. The rendered component (shown
in Figure 4) provides a generic interface to
the API and can easily be changed to repre-
sent another mapping API such as Yahoo!
Maps. To do so, simply replace the renderer
class (Listing 3) provided in the example with
one that generates the HTML and JavaScript
required to display a map from Yahoo! Maps.
User interactions with the Google Maps API,
such as zooming, panning, and clicking, are
trapped by JavaScript events, which in turn
request a URL that is mapped to a method
associated with a managed bean.
 The map component has two required
attributes: key and model. The key attribute
is the account identifi er for the Google
Maps service. You can request a key at
http://www.google.com/apis/maps/
signup.html. The model attribute requires
a subclass of the com.thepeninsulasedge.
components.model.MapModel abstract
object (Listing 7). A concrete implementa-
tion of this object represents the model for
the map component. The object contains
geospatial points in the form of com.
thepeninsulasedge.components.model.
GeoPoint objects (Listing 8) that represent
visual markers on the map. The object also
contains methods or event handlers to
respond to events fi red by the map.

The MapModel and MapBean
 The MapModel object (Listing 7) defi nes
two abstract methods: onSelect and
onMoveEnd. The onSelect method is called
when a user selects a marker on the map,
and the onMoveEnd method is invoked after
a user completes a zoom or pan operation.

abstract public String onSelect(GeoPoint pt);

abstract public String onMoveEnd(String lat,

String lng, String zoom);

 Both methods represent steps in a sim-
ple template or behavior pattern in which
behavior is implemented by a subclass of
the MapModel object (Figure 5).
 The onSelect and onMoveEnd methods
are called by the selectPoint and moveEnd
template methods, respectively. Both
methods extract values for parameters
from a request string, pass those values
onto the methods that inject behavior (for
example, onMove or onSelect) into the en-
capsulated method, and return a response
using the writeResponse method.

 The moveEnd and selectPoint methods
are invoked by the faces/dynamic/map-
bean/moveEnd and faces/dynamic/
mapbean/selectPoint URLs, respectively.
The addSelectPointListener and ad-
dMoveEndListener JavaScript functions
defi ned in the mapScript.js fi le (Listing 9)
associate a GEvent listener with the cur-
rent GMap object. When called, a listener
posts a request to the URL that invokes
either the moveEnd or selectPoint meth-
od. In this example, Gevent listeners are
generated on marker selections or pan
and zoom operations. For more informa-
tion on Gevent listeners or other facets of
the Google Maps API, refer to the Google
Maps API documentation (http://www.
google.com/apis/maps).
 The concrete implementation of the
MapModel object used in this example is
com.thepeninsulasedge.view.managed.
MapBean (Listing 10). The class defi nes an
onSelect method that extracts a message
or string contained in a GeoPoint object,
which is associated with a marker on
the map. The extracted message is then
written as a response to the initial XML-
HttpRequest object using the writeRe-
sponse method, and displayed in an info
window on the map (Figure 6).
 The onMoveEnd method updates a
display that shows the coordinates of
the map’s center and the current level of
magnifi cation (Figure 7).
 Besides providing methods to respond
to JavaScript events, the MapBean also
defi nes three action methods — ad-
dPointToMap, removeSelectedPoint, and
clearMap — that are executed by com-
mand components. These methods dem-
onstrate how the tpe:map component can
be integrated with existing JSF compo-
nents. For example, the addPointToMap
method adds a new point to the map by
manipulating the collection of GeoPoint
objects contained in the MapBean. The
method creates a new GeoPoint instance
from an address and adds the point to
the MapBean’s current list of points. The
method is executed by h:commandBut-
ton and the address is provided by an h:
inputText fi eld (See Listing 11).

GeoPoints
 Each GeoPoint object in the MapBean
is associated with a marker on a map
and located by latitude and longitude.
(To better understand the relationship
between GeoPoint objects and the Map-
Bean, see the diagram in Figure 8.)

Web Services

Figure 5 MapModel Diagram

Figure 6 Info Window

Figure 7 Coordinates and Zoom

The terms on everyone’s lips this year include “AJAX,” “Web 2.0” and

“Rich Internet Applications.” All of these themes play an integral role at

AjaxWorld. So, anyone involved with business-critical web applications

that recognize the importance of the user experience needs to attend

this unique, timely conference – especially the web designers and

developers building those experiences, and those who manage them.

BEING HELD MARCH 19 - 21, 2007!
We are interested in receiving original speaking proposals for this

event from i-Technology professionals. Speakers will be chosen

from the co-existing worlds of both commercial software and open

source. Delegates will be interested in learning about a wide range

of RIA topics that can help them achieve business value.

NEW YORK CITYNEW YORK CITY

CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYN
CHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT

ND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRO
NOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND
XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS JAVAVA ASVASV CRIPT AND XML ASYNCHRONOUS

Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...Rich Internet Applications: AJAX, Flash, Web 2.0 and Beyond...

REGISTER TODAY AND $AVE!

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED

SYS-CON Events is proud to announce the
AjaxWorld East Conference 2007!

The world-beating Conference program will provide developers and IT managers alike

with comprehensive information and insight into the biggest paradigm shift in website design,

development, and deployment since the invention of the World Wide Web itself a decade ago.

www.AjaxWorldExpo.com

T H E R O O S E V E L T H O T E L L O C A T E D A T M A D I S O N & 4 5 t h

JDJ.SYS-CON.com24 February 2007

Wireless Messaging

 Figure 8 Map Component Model

 Thus, when a user clicks a marker, the
corresponding GeoPoint object is located
in the MapBean by finding a GeoPoint
object with a matching set of coordinates.
The following Predicate (see the Apache
Commons Collection at http://jakarta.
apache.org/commons/collections/) is
used to perform the evaluation between
latitude and longitude and a correspond-
ing GeoPoint object. The Predicate
performs this evaluation while iterating
through a collection of GeoPoint objects.

 public static Predicate

findPredicate(final String lat,

final String lng) {

 return new Predicate() {

 public boolean

evaluate(Object obj) {

 if (!(obj instanceof GeoPoint))

 return false;

 GeoPoint pt = (GeoPoint)obj;

 if (pt.getLat().equals(lat) &&

pt.getLng().equals(lng)) {

 return true;

 } else {

 return false;

 }

 }

 };

 }

 The GeoPointUtil class also provides a
convenient way to create new instances
of GeoPoint objects using the Yahoo!
Geocoding API. The technique simply
parses coordinates from an XML result
generated by a request and uses the
coordinates to create a new instance. The
result is parsed with the Apache Com-
mons Digester (http://jakarta.apache.
org/commons/digester/).

The MapRenderer
 The HTML and JavaScript in Listing 6
is the code used to create a new instance
of the GMap2 object — the JavaScript
object that represents a map in the Google
Maps API. The code also ties the JavaS-
cript used to consume the Google Maps
API to the Java code in the MapBean. The
com.thepeninsulasedge.components.
MapRenderer class (Listing 3) is respon-
sible for producing the markup shown in
Listing 6. To understand which method in
the MapRenderer class produced a specific
snippet of JavaScript or HTML, look at the
comments generated by the MapRenderer
class in Listing 6. Note that only the load
function used to instantiate the GMap2
object and a set of variables are dynami-
cally generated in the MapRenderer class.
This is done to ensure that each tpe:map
component has a unique load function
and set variables, allowing multiple tpe:
map components to be used in a single
page. Uniqueness is guaranteed by ap-
pending the component’s client identifier
to the name associated with the dynami-
cally generated variable or function.
According to JSR 127, each server-side
component in JSF is guaranteed a unique
client identifier.
 The MapRenderer class relies on func-
tions defined in the mapScripts.js file
(Listing 9). These functions limit the need

to hardcode JavaScript into the class and
define essential functions such as addSe-
lectPointListener and addMoveEndEvent.
For the JavaScript generated by the Ma-
pRenenderer class to use functions defined
in mapScripts.js, the file must first be im-
ported. This is done with Shale Remoting.
The linkJavascript method in org.apache.
shale.remoting.XhtmlHelper is used for the
import statement for the mapScripts.js file:

<script type=”text/javascript” src=”/

GoogleMapsAndDWR-JSFView-context-root/faces/

static/com/thepeninsulasedge/components/

scripts/mapScripts.js”></script>

 The script import provides a reference
to the mapScript.js file relative to the Web
applications class path. Thus, the file
specified is located under the package
structure com/thepeninsulasedge/com-
ponents/scripts/. A similar import is
generated for the prototype.js file.

Conclusion
 Consuming mashup services in the
enterprise is a reality, and encapsulating
mashup APIs with custom JSF compo-
nents provides an elegant solution for
packaging and reusing these services.
The example in this article consolidated
the complex markup and script shown in
Listing 6 into a simple and concise com-
ponent that amounted to a single XML
tag. Imagine that — the power of Google
Maps packaged in a simple component.
Moreover, the componentization of the
Google Maps API, as well as the linkage
between JavaScript events and the JSF
managed bean facility, makes it relatively
easy to tie Google Maps to J2EE services
such as EJB 3.0. The result of this blending
of external mashups, Shale, and JSF is an
enterprise-ready mashup service in very
accessible package. To learn more about
the technologies referenced in this article,
please refer to the references provided.

References
• Jonas Jacobi and John R. Fallows. Pro

JSF and AJAX: Building Rich Internet
Components.

• Chris Schalk and Ed Burns. JavaServer
Faces: The Complete Reference.

• The Google Maps API documentation:
http://www.google.com/apis/maps/
documentation/

• The Shale Framework documenta-
tion: http://shale.apache.org/docu-
mentation.html

Listing 1
 public void welcomeUser(){
 FacesContext facesContext =
FacesContext.getCurrentInstance();
 String username = getParam(facesContext, “user-
name”);
 writeResponse(facesContext, “Welcome “ + username
+
“ and hello world!”);
 }

 private static String getParam(FacesContext facesCon-
text,
String param){
 String value = (String)facesContext
 .getExternalContext()
 .getRequestParameterMap().get(param);
 return value;
 }

 private static void writeResponse(FacesContext con-
text,
 String text) {
 if(context == null || text == null) return;
 ResponseWriter writer =
 (new ResponseFactory()).getResponseWriter(context,
“text/plain”);
 try {
 writer.startDocument();
 writer.writeText(text, null);
 writer.endDocument();
 writer.close();
 context.responseComplete();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

JDJ.SYS-CON.com26 February 2007

he Standard Widget Toolkit (SWT) is the GUI toolkit
used by Eclipse. The same folks that worked on the
Common Widget (CW) library for IBM/Smalltalk
developed it, this time for Java. Now, it’s maintained
as part of the Eclipse Platform project and distrib-

uted under an open source license, the Eclipse Public License
(EPL). One key design point of SWT is that it uses native
functionality on each operating system and, at the same time,
presents a common, portable API. Joe Winchester, Desktop
Java Editor for Java Developer’s Journal, asked Steve
Northover (SWT Team Lead) recently whether he’d be happy
to answer some questions about SWT and, after talking to his
colleagues and a few developers, here is the result.

JDJ: SWT supports many different widget toolkits with a
common programming API. What’s the hardest thing about
making all this work?
Steve: Specifying an API that can be implemented natively
on a variety of different platforms is very challenging. If
you make the wrong choice, you end up with API that is
diffi cult or impossible to implement. To avoid this prob-
lem, you need to approach API design with an open mind.
Smart programmers want to get the job done and don’t
care too much about how they do it. Our goal is to get out
of the way and get functionality to the programmers. We’ve
been pretty successful doing this and keeping the API
reasonable at the same time.
 For the implementation, complexity becomes a big issue.
It’s easy to die the death of 1000 cuts, implementing a na-
tive widget toolkit. A sure way to do this is to over-engineer
things. We often use the “just do the work” pattern (a favor-
ite of mine). Given two solutions to a problem, I will always
choose the one with the fewest classes and lines of code.

Carolyn: The hardest thing is saying “no” to some of the
features. Implementation-wise, though, the “devil is in the
details.”

Silenio: Sometimes it’s hard to keep the behavior of the wid-
gets consistent between platforms and still have platform-
specifi c features. For example, on the Macintosh the menu
bar is detached from the shell, which is quite different from
the other platforms. We needed to come up with a consistent
way of integrating this Macintosh feature into the API.

JDJ: When you’re dealing with a feature that must be built to
work across the different implementations, you have a choice
between doing the lowest common denominator, or something
you do natively on some platforms and emulated on others.
When do you decide which to use, and do you regret any of
these decisions?
Steve: There is no decision. If the operating system offers a
feature, we make use of it. There’s nothing to regret either.
We just go ahead and implement whatever is necessary and
move on to the next problem.
 I’d like to talk about “lowest common denominator” for a
minute though. Lowest common denominator is kind of a
negative statement. A more positive way to think about it is
“highest common multiple.” The operating systems provide
a lot of functionality that’s common, but the native API is
different. We expose this functionality, raising the bar rather
than lowering it.

JDJ: Do you wish you’d used a different API as your base rather
than the Windows one, in particular the way in which window
parents can’t be changed after construction? For example, if
this feature became supported in Windows in the future, it
might seem a bit of SWT legacy, whereas if you’d coded
reparenting in the C code that SWT sits on top of, you could
provide a higher level of API. AWT, for example, allows
reparenting by having a wrapper around the peer that can
recycle the underlying widget.
Steve: First, I’d like to challenge the notion that SWT is
based on the Windows API. It isn’t. If you go to MSDN,
find the documentation for something like TreeView32
or HDC and check out the SWT API that makes use of
these things – you’ll see it doesn’t look anything like the
Windows API. People might get this idea from things like
style bits that are found on Windows, but many things
in SWT are patterned after other operating systems. For
example, the keyboard and mouse API is based on X. We
are familiar with many different windowing systems and
make API decisions keeping all of them in mind.
 Back to reparenting: it’s X/Motif that doesn’t allow the
parent to be changed after a widget is created, not Win-
dows. Whether you are coding in Java, C, or both, either
the operating system supports reparenting or it doesn’t.
If the operating system doesn’t support this feature,
hiding it in a peer layer doesn’t really help that much

Joe Winchester is

a software developer

working on WebSphere

development tools

for IBM in Hursley, UK.

joewinchester@sys-con.com

Interview by Joe Winchester

T

SWT: Ship Happens
Insights from the SWT community

Feature

27February 2007JDJ.SYS-CON.com

(actually, it makes it worse because it increases the com-
plexity of the toolkit implementation and adds a level of
indirection).

Carolyn: By not having peers, we simplified the toolkit
tremendously. Also, peers are somewhat slower and take
up more space. And setParent() [mostly] works.

JDJ: What’s your favorite native platform to work with, and
which do you most loathe having to code on?
Silenio: My favorite platform to work with is the one I have
been working on most at the moment. That’s because it’s the
platform I understand best and I can achieve faster results.

Carolyn: Windows has the best doc, so that makes it “friend-
lier” to work with. We use Google for GTK doc. I don’t loathe
coding on any of the platforms – the variety is what makes it
interesting.

Kevin: Every platform presents unique challenges to SWT
so it’s diffi cult to single out any as being better or worse than
the others. My favorite platform really depends on the prob-
lem that I’m trying to solve.

JDJ: At JavaOne you were walking around with the letters
67384 tatoo’d on your arm. What’s the story behind this
particular bug?
Florian: SWT contains a piece of code called the
SWT_AWT bridge that lets you embed an AWT/Swing
component in an SWT shell and vice versa. Prior to
3.2, this didn’t work on the Mac due to architectural
difficulties. Basically, SWT uses the Carbon API while
AWT is implemented in terms of Cocoa, with implica-
tions on how UI events are handled. Making the event
threads of the two widget toolkits cooperate smoothly
and avoiding deadlocks proved to be a rather tricky
issue that required changes to both SWT and Apple’s
Java implementation. The discussion about all of
this took place in the aforementioned bug report and
spanned a ton of comments from various users. While
some people vented their frustration or put forth con-
spiracy theories, others actually presented ideas on how
to fix the problem. In the end, Scott Kovatch, an excel-
lent engineer at Apple, worked out and implemented the
necessary steps in cooperation with the SWT team, al-
lowing us to finally mark that bug as “RESOLVED FIXED”.
Obviously everyone is very happy about that. One user
on the bug report even went as far as articulating his
excitement over the fix in a rather unique way. For more
details, see Bugzilla.

Steve: Although Eclipse and most other SWT applications
didn’t use AWT/Swing, there were some applications that did
and this was holding them back. I hate that because we take
pride in helping people ship, not telling them which technol-
ogy they should use. SWT normally integrates really well with
native code but the Mac supports only one GUI thread and
both toolkits expected to have their own. That was the tech-
nical issue. Somehow, Scott and Silenio got it to work.

Carolyn: “SWT_AWT not implemented for Mac” https://
bugs.eclipse.org/bugs/show_bug.cgi?id=67384#c170. It was
very exciting to have this one fi xed… <g>

JDJ: What’s the story behind the naming of the classes CoolBar
and CoolItem?
Steve: They’re cool. Personally, I hate them.

Carolyn: That’s what Microsoft called them. (I know, their
control is called a “Rebar,” but they used the term CoolBar
when describing the control. See this article: http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/dn-
wui/html/msdn_rebar.asp.)

Silenio: Usually when we add a new widget to the toolkit,
we decide its name by taking into consideration the names
used by all platforms as well as our own ideas. We choose the
one that best describes the widget and that’s most known by
everyone. In this particular case, there were two main op-
tions: CoolBar (MFC) and ReBar (Win32). I must admit that
CoolBar is strange, but it’s a bit better than the other option.

JDJ: When SWT started did you think about using the AWT
model, which is essentially a native toolkit but with a wrapper
delegating to the peer? If SWT had extended AWT, then widget
interoperability, not to mention karma in the Java commu-
nity, might have been better.
Steve: For starters AWT is free-threaded. That can’t be
changed because it’s built into the toolkit. Also, there are a

 Benjamin Pasero – RSS Owl, an RSS Reader

 Carolyn MacLeod – IBM, committer

 John Kellerman – IBM, Product Manager, Eclipse

 Kevin Barnes – IBM, contributor

 Felipe Heidrich – IBM, committer

 Florian Priester – contributor

 Grant Gayed – IBM, committer

 Matthew Hatem – Lotus, Lotus Notes, Advisory Software Engineer

 Olivier Chalouhi – Azureus, a BitTorrent client

 Silenio Quarti – IBM, SWT Technical Lead, committer

 Steve Northover – IBM, SWT Team Lead, committer

Contributors

Calendar

JDJ.SYS-CON.com28 February 2007

number of other technical issues with AWT that I won’t dis-
cuss here that made this option unattractive.
 I think that most of the strong feeling comes from people
who are passionate about their technology and get carried
away. For our part, we had different design constraints that
led us to a different solution. Being native was a requirement.
At the time, although we had quite a good reputation in the
Smalltalk community, we were largely unknown in the Java
world. Extending or rewriting AWT was not an option; we had
built portable native widget toolkits in the past and there was
no time to argue over philosophy. Nobody had any idea that
Eclipse would take off like it did and that so many people would
want to use SWT outside of it. That part is amazing but it goes
to show that there is a real demand for native technologies.

JDJ: SWT has no pre-req on AWT at all, even for seemingly
trivial classes like Rectangle. This looks like a conscious
decision to have SWT be able to run without AWT having to be
present. Are there places SWT can run where the AWT packages
aren’t available?
Steve: SWT runs on QNX Photon where AWT does not exist.

JDJ: Why isn’t there an org.eclipse.swt.graphics.Dimension class?
It always seems odd when getSize() and getLocation() both
return a Point, rather than a Dimension and a Point.
Silenio: That was a design decision made to keep the number
of classes down.

Steve: The only way I know for sure to make something small
is to start out that way. Libraries always grow and program-
mers have a habit of referencing every line of code you’ve ever
written. Attempts to strip out classes later are painful and
never really work that well. In SWT, what you see is what you
get. For example, by design, there are very few inner classes in
the implementation of the toolkit (almost none in the widgets
or graphics package).

Carolyn: Why fill up the toolkit with classes that don’t pull
their weight?

JDJ: Constructor style bits have always puzzled me. I used to tell
people that they were everything that couldn’t be changed after
a widget had been constructed, and that this was everything
that affected the size of the trim. Therefore things like BORDER,
V_SCROLL, and so forth that change the trim/client area ratio
are style bits. However, there seem to be places where style bits
are used for things that also have a perfectly good getter and
setter and can clearly be changed post-construction. What’s the
story behind style bits and why and when they are and aren’t
used on an API?
Steve: There are very few features that are style bits that can be
changed after the constructor. These were added later when
we discovered that some properties that we had originally
thought were create-only could be changed later.

Carolyn: Yes, style bits are for “things that can’t be changed
after construction.” Most of them are things you wouldn’t ever
want to change after construction. But some – like read-only/
editable – occasionally needed to be changed later, so setters
were added.

Silenio: Style bits are also used to reduce the number of
classes. For example, rather than having a Separator class,
Label can display static text or be a line separator, depending
on the style bit.

JDJ: Why isn’t there a native rich text widget in SWT? The
StyledText control used by the Java editor in Eclipse is emulated,
so it’s just a big canvas with a lot of paints on it. This seems to
go against the grain of the SWT philosophy of being a thin layer
on top of the platform.
Carolyn: We originally used a native RICHEDIT on Windows
(i.e., the same control that MS WordPad uses). It didn’t fit the
requirements for the Eclipse text editor. It makes sense to use
a custom text control here for an IDE.

Felipe: Initially we had to go with an emulated rich text widget
because Motif didn’t have a native option available. Another
reason is that rich text widgets can have too many features,
making it very hard to define a common API that can be
implemented in all platforms. The door is still open for provid-
ing a native rich text editor in the future.

JDJ: Several of the last Eclipse releases have seen more things
being introduced that seem to be more emulated than native:
the UI forms toolkit, user painting in Table and Tree Items, and
the rounded gradient tab item titlebar used by Eclipse. Is there
a danger of SWT becoming Swingish, where instead of native
functionality an SWT program is doing all of its work building
the UI in the middle of a paint event?
Steve: People need to ship applications and whatever they
decide is fine by me. For example, the UI designers for Eclipse
decided they wanted a certain look for Eclipse so they built it.
It’s not a question of philosophy or Swingishness.

Felipe: Probably not; the customer would really have to over-
use the custom draw capabilities of SWT to cause the applica-
tion to look non-native. It’s important that SWT offers these
features to allow branding and custom UIs.

Feature

ODF Editor

29February 2007JDJ.SYS-CON.com

Grant: There are contexts where doing some painting is useful and is
not necessarily a non-native practice. For instance, custom drawing
of table items can be used to draw an item’s image to the right of its
text, and any programmer using the native Windows table would
have to do this anyway. However, the underlying control is still na-
tive and maintains its native behavior.
 In general, SWT will not provide non-native implementations for
natively available widgets. Exceptions to this, such as the CTabFold-
er, were created for Eclipse branding purposes, but the programmer
has a choice. So there is not necessarily a trend toward SWT doing
increased painting. Certain widgets have been painted all along.

JDJ: What do you think of things like Nebula and other efforts that
seem to be putting more emulated controls into SWT?
Silenio: They are doing great work and making the toolkit richer.

Grant: Nebula is interesting to watch because its mandate is to
create controls that do not overlap with existing ones in SWT. It’s
not surprising that these widgets are emulated since they often
implement functionalities that are not available natively. I think it’s
great that users have a common place to share controls like these
that they find useful. This is good for Eclipse and SWT.

JDJ: Swing used to get beat up quite a bit about not looking and
behaving like a native widget toolkit. In Java 6.0 they are using plat-
form API calls to determine the correct way to paint their widgets,
so presumably the difference to the user between a Swing app and
an SWT one will be indistinguishable. If this had been present at the
point when SWT was being discussed, do you think history would
have taken a different path?
Steve: Possibly, but Swing wasn’t up to the task when we needed
it. We were shifting gears from Smalltalk to Java and Swing didn’t
meet our needs. We couldn’t have waited until now for widgets that
we could use, otherwise, no Eclipse. Also, with all due respect to
Java 6.0 and Swing, there is more to being native than drawing that
way, assuming of course that you can get it right for every widget.
Eclipse and other SWT applications are tightly integrated with the
desktop and get all sorts of benefits from this type of integration.

Carolyn: It’s not just the painting; it’s the “feel” of a control, too. We
are constantly getting stuff from the operating system “for free,” like
native drag-and-drop support, native accessibility, etc.

JDJ: Following on from the previous question, if Swing hadn’t had
problems with size, platform fidelity, and reliability, do you think it
would have been adopted by IBM as the widget toolkit for Eclipse?
Steve: That’s a funny question. If Swing had met our design goals
and requirements, could we have used it? Yes, but at the time,
it didn’t. If you are really asking whether there is value in native
widget toolkits, there is. Things just feel and work right. Desktop
settings, painting and drawing, key bindings, animations, fonts,
input method editors, third-party tools, accessibility, the list goes
on. With SWT, Java is a first class citizen on the desktop.

JDJ: Apart from the previous two, what’s the single question you get
most tired of being asked about SWT?
Steve: Nothing really stands out. Explaining design decisions like
style bits, constructors, and threading can become tiresome. But
really, people can’t know the answers to these questions. If they
have never done any operating system programming and have a

Mail

RSSOwl Linux

RSSOwl Mac

JDJ.SYS-CON.com30 February 2007

Java-centric view of the world, then asking these sorts of ques-
tions is quite natural.
 How about, “Why did you do SWT? Are you trying to frac-
ture the community?” The answer is “Anything but.”

Silenio: Why doesn’t SWT use finalization? I’m sick of that one.

JDJ: There was a JavaLobby story recently about some folks
who’d managed to get the SWT API to work with Swing classes,
and even had screenshots of Eclipse running under Swing. Does
this kind of effort a) amaze, b) frighten, or c) bore you?
Steve: None of the above. I think this is really cool. One of the
challenges of SWT is developing an API that can run on all sorts
of different platforms. If you consider Swing as just another
platform, these guys ported to it. I think our position with
respect to other technologies is pretty consistent. I don’t expect
that to change. Interestingly, this port reaffirms many of the
API design decisions we’ve made.

Carolyn: a)

JDJ: The Linux folks seem to complain about print support for
SWT. Is this an issue and something being worked on?
Steve: Fixed > 20060717.

Carolyn: Printing support was added to GTK+ with the release
of GTK+ 2.10 in July. We added GTK printing to SWT practi-
cally the next day, and it went into Eclipse 3.3M1. The main
point is that we were waiting on this from GTK.

JDJ: What’s the most exciting thing going on in SWT at the mo-
ment, both within the committers and development team, and
also the larger community with its usage of SWT?
Steve: For me, it’s Vista.

Silenio: WPF port, animation API, theme drawing API, Win-
dows port for 64-bit …

Kevin: The SWT community is fun to work with because
they’re a very dedicated bunch who really want to contribute.
There are an amazing number of bug reports filed and the
reporters are always willing to work with the team to provide
more information, testing, and the feedback that we need
to make SWT better. It takes a significant commitment to
become a committer. For example, I have been an Eclipse
committer on another project for over three years but despite
that, I still need to earn my commit rights fixing problems and
learning the SWT code base.

Grant: Not 64-bit XP. Mozilla everywhere?

JDJ: What’s in the pipeline for SWT in the future?
Steve: It’s too early to tell. We’re looking at lots of things. Right
now, it’s a very interesting time for user interface technolo-
gies. Never has this space been so fragmented. We can’t even
agree on the computer language let alone the platform. On
Windows, it’s C/C++ for Win32 and C# or VB for .NET. On the
Mac, C for Carbon and Objective-C for Cocoa. Linux systems
support GTK+ and Qt. Many of the older workstations are still
running X/Motif. Then there are the browsers. Do you use
XML or AJAX to program them? Flash is a pretty cool technol-
ogy. What about PHP? If you choose AJAX, what widget library
do you use? You can use Dojo, but there’s also GWT, J2S, and a
dozen more.
 One thing is certain: rather than fight technology, we will
embrace it and continue to help programmers build and ship
products. That’s the interesting part.

JDJ: What do you think of efforts to have a declarative way of
describing an SWT GUI in something like XML?
Steve: If the world goes declarative, then we will too. One
thing I know for sure though, you will always need an API to
manipulate widgets.

JDJ: If you had to do SWT all over again, what would you do
differently with the benefit of hindsight?
Steve: Not much really. We made a few API mistakes, argu-
ments in the wrong order and that sort of thing, but nothing
major stands out. A really good indicator of this is that almost

Feature

RSSOwl Solaris

RSSOwl Win

31February 2007JDJ.SYS-CON.com

nothing in the toolkit is deprecated. In this world of bloatware
and complexity, I’m really proud of what we did in terms of
getting the API right and keeping the size of the toolkit down.
For example, the class hierarchies for graphics, widgets, the
browser, printing, and drag and drop all fit on one slide with-
out using a tiny font. It’s amazing considering the functional-
ity that’s packed in there.

JDJ: Why are there so few interfaces in SWT? Classes like org.
eclipse.swt.widgets.Layout might be a good candidate for an
interface rather than an AbstractClass.
Silenio: Interfaces have a big drawback: they can never
change. Once an interface ships, nothing can change, oth-
erwise it breaks binary and source compatibility. I believe
API always evolves and abstract classes make this evolution
easier, without leaving a trail of dead code behind (Interface1,
Interface2, etc.).

Carolyn: You have to get an interface exactly right the first
time, because you can’t change it without breaking binary
compatibility. That’s why you get silly names like “ISome-
thing2”, or, for example, “IDispatchEx”…

JDJ: Why is LayoutData typed to java.lang.Object, whereas a
marker interface might help to do things like validate at com-
pile time that the argument was actually valid? Instead, things
like Assert and casts have to be done within layouts, which
presumably is more expensive for performance and also a less
clear API than using typed arguments. For example, instead
of layoutData as an attribute on Control, you could have had
Layout.setLayoutData(Control,Object) that was overloaded on
each implementation, e.g., GridLayout.setLayoutData(Control
,GridData).
Silenio: There should be a common class (no interface, see
above) for the layout data objects. This would allow some
sharing of some common properties. On the other hand,
having declared it as an Object does not necessarily mean bad
performance, since usually the layout algorithm performs
caching and the validation of the objects only happens when
the cache is flushed.

JDJ: Likewise for arrays as arguments. Things like
setSelection(String[]) or Widget[] getItems() instead of using lists
and collections.
Carolyn: I like Arrays <g>. But the correct answer is that col-
lection classes are not always available (or not completely
implemented) in CLDC classes. SWT still runs on Java – what,
Steve – 1.2? (I know it runs for sure on 1.4.2_06 – I use that all
the time.)

Silenio: SWT runs on JDK 1.1 and collections were only intro-
duced in JDK 1.2.

JDJ: If org.eclipse.swt.widgets.List were called ListBox, for
example, there wouldn’t be naming clashes with java.util.List.
Do you wish you’d named List differently, and are there other
places like that where you think the names used clash with base
classes in an “annoying” way when doing imports.
Steve: Both the AWT and SWT List existed before java.util.
List. At the time, we had a big debate over whether or not we

should prefix the SWT classes. I forget which side I was on. I
suppose that had we prefixed them, name clashes would have
been avoided, but Java has a mechanism to resolve clashes.

Carolyn: It’s annoying when I’m trying to open class Button in
Eclipse, and the AWT version is always at the top of the list!

JDJ: How is the Vista work going? Are there any problems with
it, and also are there any cool new things you’re going to put
into SWT to take advantage of such as 3D support, some of
the stuff they use graphics card APIs for transparency, fading,
animation and so forth.
Steve: Vista is going well. The very first step is to get the Win32
port running well and taking advantage of some of the new
Vista features. That’s what I’m working on right now.

Silenio: It’s going well. We are attacking two fronts. First, we’re
making sure that the Win32 port works well and has the right

Vista Window

JDJ.SYS-CON.com32 February 2007

look and feel for Vista. This is well under way. Second, we’re
writing a port to WPF. It’s still early to comment on this, but
there is good work in progress.

JDJ: What’s the coolest SWT application you’ve seen, and what
inspires you most about how people are using SWT?
Silenio: I still have to say that Eclipse is the coolest SWT ap-
plication. It’s certainly the biggest and most famous. But there
are others out there.

Steve: Really, I interact with people mostly through the bug
system. Sometimes I see their applications and sometimes I
don’t. I’m not an evangelist or anything like that. I use RSS Owl.
It works well. Interesting things are happening at NASA JPL, JP
Morgan, and Lotus.

JDJ: What’s the ugliest SWT application you’ve seen, and what
horrifies you most about how people are using SWT?
Silenio: I haven’t seen anything yet that puts a knife through
my heart.

JDJ: SWT, like the rest of Eclipse, is open source. How do you
think this has been a benefit for both the development of the
toolkit and clients who build applications with it? Would you
say that there are also some disadvantages when compared to
closed source?
Olivier: I like the fact that it’s open source, because when we
experience a bug, or some weird behavior, we can look into the
source code and try to understand why SWT behaves that way.
I really don’t see any disadvantages to it being open source, on
the contrary. The fact that the community can help fix bugs is
really something great, and so far the development of SWT has
been good with new and improved features.

Florian: Stuff like having users send crash logs, then attaching
them to bug reports, allowing the SWT team to debug things
more directly; plus providing nightly downloads, which in turn
lets developers quickly release updates by repackaging the
patched JARs with their applications (as opposed to having
to wait for a JRE update, and then for all users to catch up, as
would be the case with other closed source systems).

Olivier: I like the fact that SWT is not an MVC framework,
and that SWT and JFace are separated. Performance is great,
and native widgets make Java desktop applications a reality.
It is also a great thing for open source projects, as they can be
compiled/interpreted with the GCJ compiler, which made it
possible for Azureus to be included in the latest Fedora, for
example.

Benjamin: I began RSS Owl in the summer of 2003 with the
intention of learning and using SWT. At that time I had been

using Eclipse 2.1 for only a short time and was very impressed
by the fast and good-looking UI. After a couple of months I
found out about the release process of Eclipse. Every Tuesday,
the SWT team delivered a new integration build of SWT, in-
cluding a detailed log about the changes from the past week.
I became a happy reader of this change log and adopted the
latest integration build as soon as it was released. Kudos to the
stability of these builds. I only had to step back a few times to
a previous milestone build.
 The bigger RSSOwl became, the more features I wanted to
add. The introduction of the Browser widget in early SWT 3.0
was exactly what I was looking for. I was finally able to render
news content that included HTML. Of course there were quite
a few bugs and some missing features in the early days of the
Browser widget. I became a frequent user of the Eclipse Bug-
zilla. Up to today I have filed 152 bugs and feature requests, of
which 106 have been closed/fixed. A lot of missing functional-
ity has been added during the various major releases: Eclipse
3.0, 3.1, and 3.2. During each release there were a couple of
new widgets and APIs. It’s great to have the SWT library pro-
vided as open source with the SWT team doing an awesome
job keeping the quality at this high level. Looking forward to
what comes during the 3.3 release cycle!

Matthew: I am a huge fan of Java and open source software.
Often, I find myself reading the Eclipse source code more than
I read the documentation. Eclipse and SWT are quite well
done. Reading the Eclipse source code has made me a better
developer. I can’t say this about every open source project.
 I have enjoyed watching and participating in the evolution
of the Eclipse project. Eclipse and SWT get better with every
release. The dedicated contributors, whether they are reporting
bugs or committing patches to fix bugs, are what make Eclipse
and SWT so great. I have used many toolkits and SWT is my
toolkit of choice.

John: The decision to launch eclipse.org and open source
Eclipse was based on our business goals. We wanted to estab-
lish an open integration platform, get ISVs on board, capture
the hearts and minds of developers, and, in general, create
a community. We, IBM, also wanted a vehicle with which we
could compete against the growth of Microsoft and Visual Stu-
dio. As a programmer, which would you prefer: an open plat-
form driven by the needs of the larger community, or a closed,
proprietary one under the control of a single vendor? As an ISV
making an investment decision, which terms would you prefer:
an open source license or a commercial license agreement with
a single vendor? We felt that doing Eclipse as an open source
project was the best way to accomplish our goals. Eclipse has
succeeded, better than we ever could have imagined.

Steve: That’s telling them.

Feature

One key design point of SWT is that it uses native functionality on
each operating system and, at the same time,

presents a common, portable API.”
“

���������������������������

����������������������������������

��������������������������������

���������������������������

����������������������������������

�������������

������������������������������
�����������������

���� ����

��

������
����

��������
���������

���������������������������
�������������������������

��������������������
�������������

�����������������������

���� ���������������������������������

�����������������
�����������

����������������
��������������

���������

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

AjaxWorld East Conference 2007 www.ajaxworldexpo.com 201-802-3022 23

 Altova www.altova.com 978-816-1600 Cover II

 Extentech www.extentech.com/java 9

 IBM ibm.com/takebackcontrol/flexible Cover IV

 ILOG www.ilog.com/jdj/ajax 17

 Infragistics www.infragistics.com/jsf 800-231-8588 10-11

 InterSystems www.intersystems.com/jalapeno1p 4

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 33

 JavaOne www.java.sun.com/javaone 25

 Jinfonet Software www.jinfonet.com/live 240-477-1000 7

 Northwoods Software Corp. www.nwoods.com 800-434-9820 15

 SOA and EOS 2007 Conference & Expo www.soaworld2007.com 201-802-3020 19

 Software FX www.softwarefx.com 800-392-4278 Cover III

JDJ.SYS-CON.com34 February 2007

hether it’s a prescriptive envi-
ronment like the JCP or a less
prescriptive one like Open-
JDK and other open source

software forums, communities have a lot
in common.
 Companies, organizations, and indi-
vidual developers join or participate in
certain communities – and not in others
– driven by expectations of benefiting from
the effort, influencing and/or leading it.
The idea of joining the JCP could be moti-
vated by the desire to make your work part
of a standard, actively leading an industry
in a certain direction and being recognized
as a thought leader or to have one’s prod-
ucts as closely aligned with the emergence
of new standards and be seen as a market
leader.
 In the case of open source software
communities one could want to benefit
from the fruits of the commons and be
better able to focus your key resources on
your product’s differentiation.
 In either case, the active participant
will enjoy advantages over those that
don’t participate or are passive in their
participation. In the case of the JCP your
advantage as spec lead and expert group
member may come from being able to
predict the direction of a new standard
better than your competition and make
product roadmap decisions accordingly.
In the case of open source communities
you may enjoy faster time-to-market and
a better ability to react to changing market
conditions due to the momentum of open
source development.
 While all communities attempt to
attract active participation by enabling
these and other benefits for those who
contribute, these communities also draw

boundaries around these benefits. The
JCP does that through its requirement on
using all the intellectual property gathered
that’s applied to developing compatible
implementations and by timing the release
of use rights. Open source communities
that use the GPL have a similar concept:
your derivative work must use the same
terms as the community is developing the
software under. Over time this balance

between benefit and obligation may move
about. The JCP used to assume that Sun
would have final copyright ownership,
and it doesn’t anymore. The JCP used to
assume that all implementations de-
rived from Sun’s, and it doesn’t anymore.
Similarly, the Apache software license has
changed over time and the Free Software
Foundation is discussing version 3 of the
GPL license.
 A community attracts interest in part
because of the structure outlined above.
And the amount of active participation
has a lot to do with timing. Spec leads
in the JCP have learned that their JSRs
often progress as fast through the process

as they go. In other words, the spec lead
must lead: by the rate at which she gener-
ates working drafts, the expert group will
respond, act. and react. For open source
software communities the attention of and
access to those with committer status de-
termines the feel of the community – and
the ease of knowing where to start.
 Where does the community need help,
where are my skills best aligned with the
work that needs to be done? The spec lead
and expert group for JSRs, the current
developers of an open source project
must both guide newcomers. There’s a risk
of being too nice. “We need help every-
where!” may not be a good answer to a
newly interested party trying to decide
how to get involved. What do you want
reviewed, what is the “to do” list for the
project? Getting involved in any communi-
ty has its own learning curve. Those with a
steep curve may be seen as elitist because
of the effort required to get into the club.
 A frequent question that spec leads in
the JCP get is: “When will you be ready?”
The broad emotion behind this query
is one that also features in open source
projects: “Is anything happening here?” To
show a pulse and a heartbeat is key to the
success of community efforts. Communi-
ties survive on volunteers: a spec lead
can develop that document elsewhere, a
developer can spend his time elsewhere.
Participants try to persuade other partici-
pants to “work” for them, for free. For such
a social contract to work, expectations
must be met. If you ask for feedback you
should get it. If you provide feedback you
should expect to be drawn in. If you get
feedback you should expect to act on it.
 As usual you can send your thoughts
and comments to onno@jcp.org.

JSR Watch

Onno Kluyt

Behavioral & Philosophical
Aspects of Communities

W

Onno Kluyt is the

director of the

JCP Program at

Sun Microsystems

and Chair of

the JCP.

onno@jcp.org

Communities try to persuade people to “work” for them, for free.
For the social contract to work, expectations must be met”“

